On minimal actions of Polish groups
نویسنده
چکیده
We show the existence of an infinite monothetic Polish topological group G with the fixed point on compacta property. Such a group provides a positive answer to a question of Mitchell who asked whether such groups exist, and a negative answer to a problem of R. Ellis on the isomorphism of L(G), the universal point transitive G-system (for discrete G this is the same as PG the Stonetech compactification of G) and E(M, G), the enveloping semigroup of the universal minimal G-system (M, G). For G with the fixed point on compacta property A4 is trivial while L(G) is not. Our next result is that even for Z with the discrete topology, L(Z) = /?Z is not isomorphic to E(M, Z). Finally we show that the existence of a minimally almost periodic monothetic Polish topological group which does not have the fixed point property will provide a negative answer to an old problem in combinatorial number theory.
منابع مشابه
Full groups of minimal homeomorphisms and Baire category methods
We study full groups of minimal actions of countable groups by homeomorphisms on a Cantor space X, showing that these groups do not admit a compatible Polish group topology and, in the case of Z-actions, are coanalytic nonBorel inside Homeo(X). We point out that the full group of a minimal homeomorphism is topologically simple. We also study some properties of the closure of the full group of a...
متن کاملSpatial and Non-spatial Actions of Polish Groups
For locally compact groups all actions on a standard measure algebra have a spatial realization. For many Polish groups this is no longer the case. However, we show here that for non-archimedean Polish groups all measure algebra actions do have spatial realizations. In the other direction we show that an action of a Polish group is whirly (“ergodic at the identity”) if and only if it admits no ...
متن کاملRemarks on Actions on Compacta by Some Infinite-dimensional Groups
We discuss some techniques related to equivariant compactifications of uniform spaces and amenability of topological groups. In particular, we give a new proof of a recent result by Glasner and Weiss describing the universal minimal flow of the infinite symmetric group S∞ with the standard Polish topology, and extend Bekka’s concept of an amenable representation, enabling one to deduce non-amen...
متن کاملFull Groups of Minimal Homeomorphisms
We study full groups ofminimal actions of countable groups by homeomorphisms on a Cantor space X, showing that these groups do not admit a compatible Polish group topology and, in the case of Z-actions, are coanalytic non-Borel inside Homeo(X). We then focus on the closure of the full group of a uniquely ergodic homeomorphism, elucidating underwhich conditions this group has a comeager (or, equ...
متن کاملPolish Group Actions: Dichotomies and Generalized Elementary Embeddings
The results in this paper involve two different topics in the descriptive theory of Polish group actions. The book Becker-Kechris [6] is an introduction to that theory. Our two topics—and two collections of theorems—are rather unrelated, but the proofs for both topics are essentially the same. Locally compact Polish groups, i.e., second countable locally compact groups, are the traditional obje...
متن کامل